- 產(chǎn)品描述
clearview甲型流感病毒IgG ELISA臨床試劑盒
廣州健侖生物科技有限公司
廣州健侖長期供應(yīng)各種流感檢測試劑,包括進(jìn)口和國產(chǎn)的品牌,主要包括日本富士瑞必歐、日本生研、美國BD、美國NovaBios、美國binaxNOW、凱必利、廣州創(chuàng)侖等主流品牌。
clearview甲型流感病毒IgG ELISA臨床試劑盒
我司還提供其它進(jìn)口或國產(chǎn)試劑盒:登革熱、瘧疾、流感、A鏈球菌、合胞病毒、腮病毒、乙腦、寨卡、黃熱病、基孔肯雅熱、克錐蟲病、違禁品濫用、肺炎球菌、軍團(tuán)菌、化妝品檢測、食品安全檢測等試劑盒以及日本生研細(xì)菌分型診斷血清、德國SiFin診斷血清、丹麥SSI診斷血清等產(chǎn)品。
歡迎咨詢
歡迎咨詢2042552662
想了解更多的產(chǎn)品及服務(wù)請掃描下方二維碼:
【公司名稱】 廣州健侖生物科技有限公司
【市場部】 楊永漢
【】
【騰訊 】 2042552662
【公司地址】 廣州清華科技園創(chuàng)新基地番禺石樓鎮(zhèn)創(chuàng)啟路63號二期2幢101-103室
僅允許進(jìn)行一次性批量試驗(yàn),比較簡單,無傳感器和在線監(jiān)測。這些放在培養(yǎng)箱內(nèi)的小容器80年代陸續(xù)在空間作了試驗(yàn)。
80年代研制的培養(yǎng)箱和細(xì)胞培養(yǎng)小室能用電池或飛船動力系統(tǒng)來維持37℃(+/-1℃)恒溫,在培養(yǎng)箱里的培養(yǎng)小室采用活塞密封,活塞能夠移動來調(diào)整室內(nèi)的體積,實(shí)驗(yàn)用藥品如激活劑、固定劑的加入需要通過一個厚的硅橡膠膜。在航天飛機(jī)STS-8,STS-9和STS-40上飛行過的培養(yǎng)箱曾包含4個12ml的培養(yǎng)小室和8個注射器。
所有早期的空間細(xì)胞生物學(xué)實(shí)驗(yàn)可稱為批量培養(yǎng)實(shí)驗(yàn),培養(yǎng)時間很有限,因?yàn)榧?xì)胞被培養(yǎng)在一個固定容量的培養(yǎng)基中,隨著時間的延長,營養(yǎng)物質(zhì)會耗竭,代謝產(chǎn)生的廢物會蓄積。于是動態(tài)細(xì)胞培養(yǎng)系統(tǒng)應(yīng)運(yùn)而生。80年代后期瑞士/德國利用滲透泵原理研制了一種新的動態(tài)細(xì)胞培養(yǎng)系統(tǒng)(DCCS)。它是一個封閉的系統(tǒng),該系統(tǒng)設(shè)有氣室和2個培養(yǎng)小室,一個為批量培養(yǎng),一個為灌注式培養(yǎng)。培養(yǎng)室容積為200ul,新鮮培養(yǎng)基儲備庫的容量達(dá)230ul。自驅(qū)動的滲透泵可以1ul/h的流速將新鮮培養(yǎng)基供應(yīng)給細(xì)胞。DCCS適合于放人歐空局(ESA)的生物柜的1型容器(81×40×20 mm)內(nèi)。該裝置是由ESA的PRODEX計(jì)劃資助完成的。*次用DCCS進(jìn)行的實(shí)驗(yàn)是1989年在前蘇聯(lián)飛行14天的生物衛(wèi)星Biokosmos 9上進(jìn)行,研究了植物原生質(zhì)體的生長和發(fā)育。第二次是在1992年微重力實(shí)驗(yàn)室IML-1的飛行任務(wù)中,研究了微重力對倉鼠腎細(xì)胞的影響。與成批培養(yǎng)方式相比,DCCS的細(xì)胞生長得更好,產(chǎn)生更多的組織纖溶酶原激活物。
為了對高效益的產(chǎn)品如藥物,以及對支持人類生存的受控生態(tài)生命支持系統(tǒng)補(bǔ)充食物供應(yīng)及廢物再循環(huán)進(jìn)行有效的空間生物加工,生物反應(yīng)器的設(shè)計(jì)與制作被提到了日程上。生物反應(yīng)器(bioreactor)系統(tǒng)包括中空纖維式、薄膜式和灌注式等。80年代下半期美國Johnson空間中心研制了有相當(dāng)精度可監(jiān)測控制的系統(tǒng)。細(xì)胞在有緩慢攪拌的(15rpm)旋轉(zhuǎn)式的帶過濾的灌注系統(tǒng)內(nèi)培養(yǎng),工作容積250ml。過濾系統(tǒng)可以存留住細(xì)胞和微載體,氣體交換通過一中空纖維式的充氧器來完成。整個裝置放在有濕度控制的c02培養(yǎng)箱內(nèi),有通道監(jiān)測和標(biāo)準(zhǔn)培養(yǎng)參數(shù)的控制,如濕度、pH、底物、產(chǎn)物濃度等。
Only one-time batch test is allowed, simpler, sensorless and online monitoring. These small containers placed in incubators have been experimentally tested in space in the 1980s.
Incubators and cell culture chambers developed in the 1980s were able to maintain a constant temperature of 37 ° C (+/- 1 ° C) with batteries or spacecraft propulsion systems. The incubation chamber in the incubator was sealed with a piston, the piston was able to move to adjust the volume in the chamber, Experimental drugs such as activators, fixatives need to pass through a thick silicone rubber membrane. Incubators that flew on the space shuttle STS-8, STS-9 and STS-40 once contained four 12-ml culture cells and eight syringes.
All early space-cell biology experiments can be described as batch culture experiments with limited incubation time because the cells are cultured in a fixed volume of medium over time, nutrients are depleted and metabolically produced waste accumulates . So dynamic cell culture system came into being. In the late 1980s, Switzerland / Germany developed a new dynamic cell culture system (DCCS) using osmotic pump principle. It is a closed system with a gas cell and two culture chambers, one for batch culture and one for perfusion culture. The incubation chamber has a volume of 200 ul and the capacity of the fresh medium reserve is 230 ul. Self-driven osmotic pumps supply fresh media to cells at a flow rate of 1 ul / h. The DCCS is suitable for Type 1 containers (81 × 40 × 20 mm) that are placed in the bio-cupboard of the ESA. The installation is funded by ESA's PRODEX program. The first experiments carried out with DCCS were performed on the biosalite Biokosmos 9, a 14-day flight in the former Soviet Union in 1989, to study the growth and development of plant protoplasts. The second was to investigate the effect of microgravity on hamster kidney cells in a 1992 IML-1 mission at the International Microgravity Laboratory. DCCS cells grew better and produced more tissue plasminogen activator than bulk culture.
The design and production of bioreactors has been put on the agenda in order to efficiently source products such as pharmaceuticals, as well as to supplement the food supply and recycling of waste for controlled living ecological life support systems that support human existence for efficient space biology processing. Bioreactor systems include hollow fiber, membrane and infusion systems. In the second half of the 1980s, the Johnson Space Center developed a system that can monitor and control with considerable accuracy. The cells were cultured in a rotating, filtered perfusion system with a slow stirring (15 rpm) with a working volume of 250 ml. Filtration systems can hold cells and microcarriers, and gas exchange takes place through a hollow fiber type oxygenator. The whole device is placed in a humidity-controlled c02 incubator with channel monitoring and control of standard culture parameters such as humidity, pH, substrate, product concentration, and the like.